- [23] Szebehely, V. G., Hydrodynamic impact, Appl. Mech. Rev. 12 (1959) 297-300.
- [24] Taylor, J. L., Some hydrodynamical inertia coefficients, Phil. Mag. Ser. A7, 9 (1930).
- [25] Thigpen, A., Water-entry technology, Sandia Corporation Technical Report SC-Dr 71 0196 (1971).
- [26] Trilling, L., The impact of a body on a water surface at an arbitrary angle, J. Appl. Physics 21 (1950) 161-170.
- [27] von Kármán, Th., The impact on seaplane floats during landing. NACA TN 321 (1929).
- [28] Wagner, H., Über Stoss und Gleitvorgänge an der Oberfläche von Flüssigkeiten, ZAMM 12 (1932) 193-215.
- [29] Wardlaw, A. B., Morrison, A. M., and Baldwin, J. L., Prediction of impact pressures, forces and moments during vertical and oblique water entry, *Naval Surface Weapons Center*, White Oak Laboratories NSWC/ WOL/TR 77-16 (1977).
- [30] Watanabe, S., Resistance of impact on water surface, part V-Sphere, Scientific Papers of the Institute of Physical and Chemical Research of Japan Vol. 23, No. 484 (1934) 202-208.
- [31] Watanabe, S., Resistance of impact on water surface, Part IV-Cylinder, Scientific Papers of the Institute of Physical and Chemical Research of Japan Vol. 23, No. 484 (1934) 249-255.
- [33] White, F. G., Photographic studies of splash in vertical and oblique water entry of spheres, NAVORD Rep. 1228 (1950).

Forthcoming papers

The following papers have been accepted for publication in the Journal of Engineering Mathematics:

- 1. Alternative integral representations for the Green function of the theory of ship wave resistance, by F. Noblesse.
- 2. Injection from a finite section of a flat plate placed parallel to a uniform stream, by F. T. Smith and S. C. R. Dennis.
- 3. Non-uniform slot injection into a laminar boundary layer, by N. Riley.
- 4. On the wave resistance of a submerged semi-elliptical body, by L. K. Forbes.
- 5. The transient heaving motion of floating cylinders, by R. W. Yeung.
- 6. Linear and nonlinear hyperbolic wave problems with input sets, by E. Adams and W. F. Ames.
- 7. Optimal design of two-dimensional leaflet valves, by E. O. Tuck.